Lamin A conformation modelling

Date Available
2019-11-01Type
datasetData Creator
Houston, Douglas RMakarov, Alex A
Zou, Juan
Spanos, Christos
Solovyova, Alexandra S
Cardenal-Peralta, Cristina
Rappsilber, Juri
Schirmer, Eric C
Publisher
University of Edinburgh. School of Biological Sciences. Institute of Quantitative Biology, Biochemistry and BiotechnologyRelation (Is Referenced By)
https://doi.org/10.1038/s41467-019-11063-6Metadata
Show full item recordAltmetric
Citation
Houston, Douglas R; Makarov, Alex A; Zou, Juan; Spanos, Christos; Solovyova, Alexandra S; Cardenal-Peralta, Cristina; Rappsilber, Juri; Schirmer, Eric C. (2019). Lamin A conformation modelling, [dataset]. University of Edinburgh. School of Biological Sciences. Institute of Quantitative Biology, Biochemistry and Biotechnology. https://doi.org/10.7488/ds/2556.Description
Data in support of manuscript: "Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity" Lamin A is a nuclear intermediate filament protein critical for nuclear architecture and mechanics and mutated in a wide range of human diseases. Yet little is known about the molecular architecture of lamins and mechanisms of their assembly. Here we use cross-linking SILAC mass spectrometry to determine interactions within lamin dimers and between dimers in higher-order polymers. We find evidence for a compression mechanism where coiled coils in the lamin A rod can slide onto each other to contract rod length, likely driven by a wide range of electrostatic interactions with the flexible linkers between coiled coils. Similar interactions occur with unstructured regions flanking the rod domain during oligomeric assembly. Mutations linked to human disease block these interactions, suggesting that this spring-like contraction can explain in part the dynamic mechanical stretch and flexibility properties of the lamin polymer and other intermediate filament networks.The following licence files are associated with this item: